A pointwise approximation theorem for linear combinations of Bernstein polynomials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Pointwise Approximation Theorem for Linear Combinations of Bernstein Polynomials

Recently, Z. Ditzian gave an interesting direct estimate for Bernstein polynomials. In this paper we give direct and inverse results of this type for linear combinations of Bernstein polynomials.

متن کامل

Pointwise approximation for a type of Bernstein-Durrmeyer operators

*Correspondence: [email protected] College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang, 050024, People’s Republic of China Hebei Key Laboratory of Computational Mathematics and Applications, Shijiazhuang, 050024, People’s Republic of China Abstract We give the direct and inverse approximation theorems for a new type of Bernstein-Durrmeyer operators with the mod...

متن کامل

Pointwise Weighted Approximation of Functions with Endpoint Singularities by Combinations of Bernstein Operators

Approximation properties of Bernstein operators have been studied very well (see [2], [3], [5]-[8], [12]-[14], for example). In order to approximate the functions with singularities, Della Vecchia et al. [3] and Yu-Zhao [12] introduced some kinds of modified Bernstein operators. Throughout the paper, C denotes a positive constant independent of n and x, which may be different in different cases...

متن کامل

Approximation with Bernstein-Szegö polynomials

We present approximation kernels for orthogonal expansions with respect to Bernstein-Szegö polynomials. The construction is derived from known results for Chebyshev polynomials of the first kind and does not pose any restrictions on the Bernstein-Szegö polynomials.

متن کامل

A fractional type of the Chebyshev polynomials for approximation of solution of linear fractional differential equations

In this paper we introduce a type of fractional-order polynomials based on the classical Chebyshev polynomials of the second kind (FCSs). Also we construct the operational matrix of fractional derivative of order $ gamma $ in the Caputo for FCSs and show that this matrix with the Tau method are utilized to reduce the solution of some fractional-order differential equations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Abstract and Applied Analysis

سال: 1996

ISSN: 1085-3375

DOI: 10.1155/s1085337596000218